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Goal of this series of talks

The goal of these talks is threefold

1 Category theory aimed at “free formulas” and their combinatorics
2 How to construct free objects

1 w.r.t. a functor with - at least - two combinatorial applications:

1 the two routes to reach the free algebra
2 alphabets interpolating between commutative and non commutative

worlds

2 without functor: sums, tensor and free products
3 w.r.t. a diagram: limits

3 Representation theory: Categories of modules, semi-simplicity,
isomorphism classes i.e. the framework of Kronecker coefficients.

4 MRS factorisation: A local system of coordinates for Hausdorff
groups.

3 / 27



Disclaimer. – The contents of these notes are by no means intended to
be a complete theory. Rather, they outline the start of a program of work
which has still not been carried out.
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CCRT[20] MRS and the outer world I.
The past gives a hand to the future.

1 Last time, we examined Functional and Topological Questions (i.e.
Local domains)

1 Iterated integrals
2 NCDE S ′ = MS with asymptotic condition
3 The topology of H(Ω)

2 ... and stated some open problems relative to the tree of holomorphic
functions generated (continuity, Baire classes). See attached file
(CCRT[19] v8.pdf) in the seminar’s page.

3 Today we will begin to explore how the MRS factorization is linked to
classical and modern matters.

4 Some concluding remarks.
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Motivation

Goal of this talk. – In all our work we have infinite sums and infinite
products. If we want to explain this beautiful subject in conferences to
other colleagues (math, physics and computer science), we must make
precise, explicit and rigorous

what is the source.

what is the target.

what are the limiting processes involved in these two spaces.

The goal of this talk is to (try to) make all these points crystal clear.
Let us start, for example, with the following arrow of commutative algebras

(C〈X 〉, x , 1X∗)
Li• (H(Ω),×, 1Ω) (1)
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Introduction

1 On the RHS of (1), we have the space of holomorphic functions over the

connected open set Ω (Ω ⊂ B̃ with B = Cr {0, 1})
2 In practice Ω is simply connected (in order that d

dz had a section, i.e. the

antiderivative), then Ω = Cr (]−∞, 0] ∪ [1,+∞[) or Ω = B̃ are usually
considered.

3 On the LHS, we have the algebra of noncommutative polynomials embedded
in the shuffle algebra of noncommutative series (C〈〈X 〉〉, x , 1X∗).

4 Beginning by this LHS, we observe that two topologies are usually
considered.

1 The topology of stationary convergence.
2 The topology of Treves.

5 We have (too quickly, I admit) seen these matter last Friday, it leads to the
use of MRS factorization.

6 Today we will pursue our step-by-step spiral route (see slide 18).
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Topology of stationary convergence (TSC)

7 It is the product topology on C〈〈X 〉〉 =Set CX∗ , or, if one prefers,
that of pointwise convergence on the words, but C being endowed
with the discrete topology.

8 This topology is standard in combinatorics and computer science
because it does not need k to be endowed with any topology a priori.

9 It is the mode of convergence of Picards’s process and the MRS
factorization with k = H(Ω) (a strong one indeed as it implies all
others).

10 Let us firstly consider finite alphabets (as X = {x0, x1}, k arbitrary)
and give the quantified criterium for (Sn)n≥0 to converge to S

(∀w ∈ X ∗)(∃N ≥ 0)(∀n ≥ N)(〈Sn|w〉 = 〈S |w〉) (2)
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TSC as defined by a distance

11 Ex1. – We suppose X to be finite and k an arbitrary ring (it is, in our
works k = C or H(Ω), but the following holds true for any ring whatever its
characteristics).

12 1) Prove that, when X is finite, the topology given by the criterium (2) is
exactly defined by the distance (called ultrametric distance)

d(S ,T ) = 2−$(S−T ) (3)

where, for R ∈ k〈〈X 〉〉, $(R) = inf{|w |}w∈supp(R) ∈ N ∪ {+∞}
2) Give an example showing that the result is no longer true if X is infinite
(Hint. – Take X = Y and consider the sequence of series Sn =

∑
1≤j≤n yj

(hence, in particular, S0 = 0), show that Sn does converge to S =
∑

j≥1 yj

wrt (2) but NOT wrt the distance (3)).

13 This topology is also that of Summable Families in [16] and [27].

14 We will see later the notion of Summable Family within (abelian) groups,
and before consider a bit what says Riemann’s Series Theorem [28].
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TSC and iterated integrals

15 Ex2. – Let X be an alphabet, (A, ∂) be a differential ring [6] and (ux )x∈X
a family in A. We suppose that ∂ admits a section

∫
∈ EndZ(A) i.e. such

that ∂ ◦
∫

= IdA. We extend these elements to A〈〈X〉〉 term-by-term by

d(S) :=
∑

w∈X∗
∂(〈S |w〉)w ;

∫
S :=

∑
w∈X∗

[

∫
〈S |w〉]w (4)

With M =
∑

x∈X ux x , we define the sequence

S0 = 1A〈〈X〉〉 , Sn+1 = 1A〈〈X〉〉 +

∫
M.Sn (5)

1) Show that this sequence converges, for the topology defined by (3), to a
solution of the system

d(S) = M.S ; 〈S |1X∗〉 = 1A (6)
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TSC and iterated integrals/2

16 Ex2. – cont’d
2) Show that the result above (convergence to a solution ) holds true even
for arbitrary M ∈ A+〈〈X 〉〉.
3) Show that, with Ω ⊂ C open and simply connected, A = H(Ω),
∂ = d/dz and, with z0 ∈ Ω,

∫
(f ) =

∫ z

z0
f (s)ds, we get

lim
n→∞

Sn =
∑

w∈X∗
αz

z0
(w)w (7)

where Sn is the sequence defined in (5).
4) (Change of lower bounds) Let F = (zw )w∈X∗ be an abitrary family of
points of Ω. Show that the recursion

αz
F (1X∗) = 1H(Ω), α

z
F (xv) =

∫ z

zv

ux (s)αs
F (v)ds (x ∈ X , v ∈ X ∗) (8)

is well defined and that S =
∑

w∈X∗ α
z
F (w)w is a solution of (6).

11 / 27



TSC and iterated integrals/3

17 Ex2. – cont’d
5) Formulate a counterpart of the recursion (8) for iterated integrals in an
integro-differential ring (A, d ,

∫
).

18 Ex3. –
Let M be a monoid (in fact we will consider M = X ∗ or M = X ∗ ⊗X ∗, in
general M is the set of monomials). We have the usual pairing
kM ⊗ k(M) → k, by

〈S |P〉 :=
∑

m∈M

〈S |m〉〈P|m〉 (9)

19 A family of series (Si )i∈I is said summable if, for all m ∈ M, i 7→ 〈Si |m〉 is
finitely supported and the limit is, by definition, S =

∑
m∈M

∑
i∈I 〈Si |m〉m.
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TSC and metric (abelian) groups

20 Ex4. –
Let (G ,+, d) be an abelian group endowed with a distance d . We say that
it is a metric group if the operations (g , h)→ g + h and g → −g are
continuous.
1) Let X be an alphabet and k a ring. Prove that (k〈〈X 〉〉,+, d), where d is
the distance (3) is a metric group.
2) In a metric group, a family (gi )i∈I is said summablea to S if

(∀ε > 0)(∃F ⊂finite I )(F ⊂ F ′ ⊂finite I =⇒ d
(∑

j∈F ′ gj ,S
)
< ε)

3) Show that, if X is finite, a family (Si )i∈I of series is summable if, for all
w ∈ X ∗, the map i → 〈Si |w〉 is finitely supported. Show that its sum is then

S =
∑

w∈X∗
∑

i∈I 〈Si |w〉w

aFor summability, have a look there
https://mathoverflow.net/questions/289760

https://mathoverflow.net/questions/318843

http://www.cip.ifi.lmu.de/~grinberg/t/21s/lecs.pdf
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TSC and MRS (double series and linear operators)

21 Now, consider the MRS factorization which is one of our precious jewels.

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl ) (10)

22 It is of the form A = B = C = D. What do we have ?

A = B is a definition.
B = C is the expression of “Bases in Duality”.
C = D is a factorization in an infinite product.

The minimal (and natural) structure where it can take place is that of
topological (we have infinite sums and products) rings (see [4], ch. III §6
section 3 and [7]).

23 To understand (and prove) (10) the ultrametric distance (3) will be
sufficient. But first, let’s have a slide of motivation.
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Factorisation of the diag. series as a resolution of identity.

Resolution of identity as an infinite product

We are now in the position of writing the principal factorisation of the diagonal
series. In here, series multiply by shuffle on the left and concatenation on the
right.

DX :=
∑

w∈X∗

w ⊗ w =
∑

w∈X∗

Sw ⊗ Pw =

↘∏
l∈LynX

exp(Sl ⊗ Pl ) (11)

Application to factorisation of characters

If we have a shuffle-character χ : (k〈X 〉, x ,∞X∗)→ A, we act on the left

χ =
∑

w∈X∗

χ(w)⊗ w =

↘∏
l∈LynX

exp(χ(Sl )⊗ Pl ) (12)

But with a conc-character χ : (k〈X 〉, co\c,∞X∗)→ A, we act on the right

χ =
∑

w∈X∗

w ⊗ χ(w) =

↘∏
l∈LynX

exp(Sl ⊗ χ(Pl )) (13)
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TSC and MRS/2

21 Identity B = C in (10) is an identity between double series (i.e. the algebra
k〈〈X ∗ ⊗X ∗〉〉)

22 Each S ∈ k〈〈X ∗ ⊗X ∗〉〉 has an intepretation in terms of operators.

1 Firstly, we can remark that one can always write S =
∑

u∈X∗ Su ⊗ u
(existence, summabilitity and unicity is left, as an exercise, to the
reader)

2 More generally, a basis (Qi )i∈I , a basis of k〈X 〉 being given, one can
write uniquely S as S =

∑
i∈I Li ⊗ Qi , where Li ∈ k〈〈X 〉〉 (again

existence, summabilitity and unicity is left to the reader)
3 Let us remark, in passing that the ex-

pressions Li⊗Qi are by no means ambiguous because, although the arrow
k〈〈X 〉〉 ⊗ k〈〈X 〉〉 → k〈〈X ∗ ⊗X ∗〉〉

is not into in general its restriction to k〈〈X 〉〉 ⊗ k〈X 〉 is into.

23 To S =
∑

i∈I Li ⊗ Qi one associates Φ(S) ∈ Hom(k〈X 〉, k〈〈X 〉〉) defined by

Φ(S)[u] :=
∑
i∈I

〈Li |u〉Qi (14)
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TSC and MRS/3

24 Now, we have a lemma

Lemma

Let (Qi )i∈I be a basis of k〈X 〉 and (Lj )j∈I be its dual family (defined by
〈Lj |Qi 〉 = δij ), then

Φ(
∑
i∈I

Li ⊗ Qi ) = Id k〈X〉 (15)

25 To conclude, in view of this lemma, it suffices to remark that

Φ(
∑

w∈X∗

w ⊗ w) = Id k〈X〉 = Φ(
∑

w∈X∗

Sw ⊗ Pw ) (16)

26 Now, remarking that, with g = Liek〈X 〉, one has k〈〈X 〉〉 = U(g), C = D is a
particular case of the following theorem.
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Main theorem

Theorem, [13]

Let k be a Q-algebra and g be a Lie algebra which is free as a k-module. Let us
fix an ordered basis B = (bi )i∈I (where the ground set (I , <) is totally ordered) of
g. To construct the associated PBW basis of U = U(g), we use the following
multiindex notation. For every α ∈ N(I ), we set

Bα = b
α(i1)
i1
· · · bα(in)

in
∈ U (17)

where {i1, · · · , in} ⊃ supp(α) (and i1 < · · · < in).
Consider the linear coordinate forms Bβ ∈ U∨ defined by

〈Bβ |Bα〉 = δα,β . (18)

We will also use the elementary multiindices ei ∈ N(I ) defined for all i ∈ I by
ei (j) = δi,j .
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Main theorem/2

Theorem cont’d
Then:a

1 We have

Bα ~ Bβ =
(α + β) !

α !β !
Bα+β (19)

and

Bα(i1)ei1
+···+α(ik )eik

=
B

~α(i1)
ei1

~ · · ·~ B
~α(ik )
eik

α(i1) ! · · ·α(ik ) !
. (20)

2 The following infinite product identity holds:

IdU = ~→i∈I e
Im(Bei

⊗Bei )
~ =

→∏
i∈I

e
Im(Bei

⊗Bei )
~ (21)

within End(U).

aWe use the notation α! for α ∈ N(I ); this is the product α! =
∏

i∈I αi !.
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THANK YOU FOR YOUR ATTENTION !
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N. Bourbaki, 1997-1998, exp. n o 849, p. 341-367.

[22] Ore condition
https://en.wikipedia.org/wiki/Ore_condition

[23] Ore localization
https://ncatlab.org/nlab/show/Ore+domain

[24] Constants in localizations.
https://math.stackexchange.com/questions/2051634

[25] Initial topology
https://en.wikipedia.org/wiki/Initial_topology

[26] David E. Radford, Hopf algebras, Series on Knots and Everything 49.
World Scientific, 2012.

[27] Christophe Reutenauer, Free Lie Algebras, Université du Québec a
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